Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tetra- μ -acetato- κ^8 O:O'-bis[(4-vinylpyridine- κN)copper(II)](Cu—Cu)

Fa-Qian Liu,* Rong-Xun Li, Shao-Xiang Li, Li-Shui Sun and Guang-Ye Liu

Key Laboratory of Advanced Materials, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China Correspondence e-mail: qdplastics@163.com

Received 28 August 2007; accepted 29 August 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.012 Å; R factor = 0.061; wR factor = 0.182; data-to-parameter ratio = 16.4.

The title compound, $[Cu_2(C_2H_3O_2)_4(C_7H_7N)_2]$, consists of centrosymmetric dinuclear units, in which four acetate groups bridge the two Cu atoms and a 4-vinylpyridine neutral ligand occupies the axial position of each Cu atom, coordinated to it through the pyridine N atom. Each Cu atom has a distorted octahedral coordination. Weak $C-H \cdots O$ interactions contribute to the crystal packing stability.

Related literature

For related literature, see: Seco et al. (2002).

Experimental

Crystal data

 $\begin{array}{l} C_{22}H_{26}Cu_2N_2O_8\\ M_r=573.53\\ \text{Monoclinic, }P2_1/c\\ a=10.696\ (2)\ \text{\AA}\\ b=12.830\ (3)\ \text{\AA}\\ c=9.4820\ (19)\ \text{\AA}\\ \beta=105.65\ (3)^\circ \end{array}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2004) *T*_{min} = 0.623, *T*_{max} = 0.845 $V = 1253.0 (5) Å^{3}$ Z = 2Mo K\alpha radiation $\mu = 1.74 \text{ mm}^{-1}$ T = 293 (2) K $0.30 \times 0.20 \times 0.10 \text{ mm}$

2455 measured reflections 2358 independent reflections 1830 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.013$ Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.061$ $wR(F^2) = 0.182$ S = 1.012358 reflections 144 parameters $\begin{array}{l} 1 \mbox{ restraint} \\ \mbox{H-atom parameters constrained} \\ \Delta \rho_{max} = 1.47 \mbox{ e } \mbox{ Å}^{-3} \\ \Delta \rho_{min} = -1.13 \mbox{ e } \mbox{ Å}^{-3} \end{array}$

Table 1

Selected geometric parameters (Å, °).

Cu-O2	1.969 (4)	Cu-O1	1.979 (4)
Cu-O3	1.971 (4)	Cu-N	2.178 (5)
Cu-O4	1.977 (5)	Cu-Cu ⁱ	2.6405 (14)
O2-Cu-O3	89.4 (2)	O1-Cu-N	100.41 (19)
O3-Cu-O4	167.5 (2)	O2-Cu-Cu ⁱ	81.48 (13)
O3-Cu-O1	88.7 (2)	O3-Cu-Cu ⁱ	85.37 (14)
O4-Cu-O1	89.7 (2)	O4-Cu-Cu ⁱ	82.19 (15)
O2-Cu-N	92.43 (19)	O1-Cu-Cu ⁱ	85.69 (13)
O3-Cu-N	97.14 (19)	N-Cu-Cu ⁱ	173.42 (15)
O4-Cu-N	95.30 (19)		

Symmetry code: (i) -x + 1, -y, -z.

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C5-H5A\cdots O2$	0.93	2.54	3.083 (8)	118

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2001); molecular graphics: *SHELXTL* (Sheldrick, 2001); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2001) and local programs.

This work was supported by the National Natural Science Foundation of China (grant No. 20601015) and the Natural Science Foundation of Shandong Province (grant No. Y2006B12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2288).

References

Bruker (2001). *SMART* (Version 5.628) and *SAINT* (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.

Seco, J. M., Gonzàlez Garmendia, M. J., Pinilla, E. & Torres, M. R. (2002). Polyhedron, 21, 457–464.

Sheldrick, G. M. (2001). *SHELXTL*. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, m2455 [doi:10.1107/S1600536807042328]

Tetra-*µ*-acetato-*k*⁸*O*:*O*'-bis[(4-vinylpyridine-*kN*)copper(II)](*Cu-Cu*)

F.-Q. Liu, R.-X. Li, S.-X. Li, L.-S. Sun and G.-Y. Liu

Comment

The title compound,(I), (Fig. 1), consists of centrosymmetric dinuclear units, in which four acetate groups bridge the two copper atoms and a 4-vinylpyridine neutral ligand occupies the axis position of each copper atom, coordinated to them through the pyridine nitrogen atom. Each copper atom has a distorted square-planar pyramidal coordination, with four oxygen atoms in a plane. The distances for Cu—O1, O2, O3 and O4 are 1.979 (4), 1.969 (4), 1.971 (4) and 1.977 (5) Å, respectively. The fifth coordination position is occupied by the pyridine nitrogen, N, of a ligand molecule at 2.178 (5) Å. All these values agree well with those observed in $[Cu_2(v-OOCCH_3)_4(PhNHpy)_2]$ (PhNHpy is 2-anilinopyridine) (Seco *et al.*, 2002). The copper atom rises from the basal plane to the apical N atom by 0.217 (1) Å. The Cu…Cu separation is 2.6405 (14) Å. Weak intramolecular C—H…O interactions contribute to the crystal packing stability.

Experimental

A solution of 4-vinylpyridine (1.05 g, 10 mmol) in alcohol (10 ml) was added to $Cu(OAc)_2 \cdot H_2O$ (2.00 g, 10 mmol) in alcohol (40 ml). The solution was stirred during 2 h and a precipitate was formed. The blue precipitate was filtered off, washed with alcohol and dried *in vacuo* over CaCO₃. Blue crystals were obtained from recrystallization in alcohol after a few days.

Refinement

H atoms were positioned geometrically (C—H = 0.93 Å or 0.96 Å) and allowed to ride on their parent atoms with $U_{iso}(H)$ = 1.2 or 1.5 times $U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme, hydrogen atoms were omitted for clarity.

Fig. 2. The packing of (I), viewed down the b axis.

$Tetra-\mu-acetato-\kappa^8 O:O'-bis[(4-vinylpyridine-\kappa N)copper(II)](Cu-Cu)$

$F_{000} = 588$
$D_{\rm x} = 1.520 {\rm ~Mg} {\rm ~m}^{-3}$
Mo K α radiation $\lambda = 0.71073$ Å
Cell parameters from 3329 reflections
$\theta = 2.5 - 25.1^{\circ}$
$\mu = 1.74 \text{ mm}^{-1}$
T = 293 (2) K
Block, blue
$0.30\times0.20\times0.10~mm$

Data collection

11 I. O (D
ons with $I > 2\sigma(I)$

Refinement

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.1P)^2 + 3P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\text{max}} = 0.002$
$\Delta \rho_{max} = 1.47 \text{ e } \text{\AA}^{-3}$

144 parameters

 $\Delta \rho_{\rm min} = -1.13 \text{ e } \text{\AA}^{-3}$

1 restraint

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$
Cu	0.40251 (7)	0.02266 (5)	0.05538 (7)	0.0441 (3)
01	0.3606 (5)	-0.1277 (3)	0.0336 (5)	0.0612 (11)
O2	0.4745 (5)	0.1639 (3)	0.0554 (5)	0.0630 (12)
O3	0.3013 (5)	0.0430 (4)	-0.1496 (5)	0.0641 (12)
O4	0.5344 (5)	-0.0066 (4)	0.2417 (5)	0.0663 (12)
Ν	0.2542 (5)	0.0760 (4)	0.1573 (5)	0.0508 (11)
C1	-0.0518 (10)	0.2562 (8)	0.4014 (10)	0.101
H1A	0.0269	0.2911	0.4345	0.121*
H1B	-0.1233	0.2774	0.4321	0.121*
C2	-0.0617 (10)	0.1780 (8)	0.3125 (10)	0.100
H2A	-0.1386	0.1412	0.2771	0.120*
C3	0.0585 (7)	0.1517 (7)	0.2715 (8)	0.074 (2)
C4	0.1672 (8)	0.2085 (5)	0.2806 (8)	0.0677 (19)
H4A	0.1774	0.2736	0.3251	0.081*
C5	0.2638 (6)	0.1679 (5)	0.2221 (7)	0.0562 (15)
H5A	0.3382	0.2073	0.2293	0.067*
C6	0.1465 (7)	0.0221 (6)	0.1532 (8)	0.0691 (19)
H6A	0.1387	-0.0437	0.1106	0.083*
C7	0.0486 (8)	0.0551 (8)	0.2057 (9)	0.083 (2)
H7A	-0.0243	0.0136	0.1978	0.099*
C8	0.6099 (8)	0.3033 (6)	0.0297 (10)	0.082 (2)
H8A	0.5859	0.3336	0.1111	0.123*
H8B	0.5659	0.3391	-0.0587	0.123*
H8C	0.7020	0.3093	0.0448	0.123*
C9	0.5718 (6)	0.1895 (5)	0.0165 (7)	0.0501 (14)
C10	0.7308 (8)	-0.0547 (7)	0.4061 (7)	0.080 (2)
H10A	0.8105	-0.0162	0.4246	0.121*
H10B	0.7496	-0.1279	0.4161	0.121*
H10C	0.6842	-0.0343	0.4752	0.121*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C11	0.6490 (7)	-0.0322 (4)) 0.252	27 (7)	0.0563 (16)	
Atomic disp	lacement parameter	$rs(\AA^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Cu	0.0535 (4)	0.0386 (4)	0.0448 (4)	0.0010 (3)	0.0212 (3)	0.0026 (3)
01	0.076 (3)	0.044 (2)	0.074 (3)	-0.012 (2)	0.038 (2)	0.001 (2)
O2	0.073 (3)	0.042 (2)	0.085 (3)	-0.007 (2)	0.041 (3)	0.000(2)
03	0.066 (3)	0.073 (3)	0.051 (2)	0.012 (2)	0.011 (2)	0.004 (2)
04	0.085 (3)	0.069 (3)	0.045 (2)	0.011 (3)	0.017 (2)	0.004 (2)
Ν	0.054 (3)	0.052 (3)	0.049 (3)	0.000(2)	0.019 (2)	-0.001 (2)
C1	0.101	0.101	0.101	0.000	0.027	0.000
C2	0.100	0.100	0.100	0.000	0.027	0.000
C3	0.067 (4)	0.107 (7)	0.058 (4)	0.029 (4)	0.034 (3)	0.028 (4)
C4	0.099 (5)	0.048 (4)	0.068 (4)	0.020 (4)	0.043 (4)	0.010 (3)
C5	0.061 (4)	0.053 (4)	0.063 (4)	0.000 (3)	0.030 (3)	0.008 (3)
C6	0.064 (4)	0.074 (5)	0.077 (5)	-0.020 (4)	0.033 (4)	-0.018 (4)
C7	0.066 (4)	0.103 (7)	0.091 (6)	-0.009 (4)	0.043 (4)	-0.003 (5)
C8	0.089 (5)	0.047 (4)	0.120 (7)	-0.016 (4)	0.047 (5)	0.002 (4)
C9	0.061 (4)	0.039 (3)	0.056 (3)	-0.004 (3)	0.024 (3)	0.007 (3)
C10	0.104 (6)	0.073 (5)	0.051 (4)	0.021 (4)	-0.002 (4)	-0.001 (3)
C11	0.083 (5)	0.034 (3)	0.046 (3)	0.006 (3)	0.006 (3)	-0.001 (2)

Geometric parameters (Å, °)

1.969 (4)	С3—С7	1.379 (12)
1.971 (4)	C4—C5	1.399 (9)
1.977 (5)	C4—H4A	0.9300
1.979 (4)	C5—H5A	0.9300
2.178 (5)	C6—C7	1.343 (10)
2.6405 (14)	С6—Н6А	0.9300
1.251 (7)	C7—H7A	0.9300
1.238 (7)	C8—C9	1.511 (9)
1.240 (8)	C8—H8A	0.9600
1.246 (9)	C8—H8B	0.9600
1.320 (8)	C8—H8C	0.9600
1.335 (8)	C9—O1 ⁱ	1.251 (7)
1.296 (8)	C10—C11	1.509 (8)
0.9300	C10—H10A	0.9600
0.9300	C10—H10B	0.9600
1.479 (12)	C10—H10C	0.9600
0.9300	C11—O3 ⁱ	1.240 (8)
1.355 (11)		
89.4 (2)	C3—C4—C5	119.2 (7)
89.4 (2)	C3—C4—H4A	120.4
167.5 (2)	С5—С4—Н4А	120.4
167.15 (17)	N—C5—C4	122.9 (6)
88.7 (2)	N—C5—H5A	118.5
	1.969 (4) 1.971 (4) 1.977 (5) 1.979 (4) 2.178 (5) 2.6405 (14) 1.251 (7) 1.238 (7) 1.240 (8) 1.246 (9) 1.320 (8) 1.320 (8) 1.335 (8) 1.296 (8) 0.9300 0.9300 1.479 (12) 0.9300 1.355 (11) 89.4 (2) 89.4 (2) 167.5 (2) 167.15 (17) 88.7 (2)	$1.969(4)$ $C3-C7$ $1.971(4)$ $C4-C5$ $1.977(5)$ $C4-H4A$ $1.979(4)$ $C5-H5A$ $2.178(5)$ $C6-C7$ $2.6405(14)$ $C6-H6A$ $1.251(7)$ $C7-H7A$ $1.238(7)$ $C8-C9$ $1.240(8)$ $C8-H8A$ $1.246(9)$ $C8-H8B$ $1.320(8)$ $C9-O1^i$ $1.335(8)$ $C9-O1^i$ $1.296(8)$ $C10-C11$ 0.9300 $C10-H10A$ 0.9300 $C10-H10B$ $1.479(12)$ $C10-H10C$ 0.9300 $C11-O3^i$ $1.355(11)$ $S3-C4-C5$ $89.4(2)$ $C3-C4-C5$ $89.4(2)$ $C3-C4-H4A$ $167.5(2)$ $C5-C4-H4A$ $167.15(17)$ $N-C5-C4$ $88.7(2)$ $N-C5-H5A$

O4—Cu—O1	89.7 (2)	C4—C5—H5A	118.5
O2—Cu—N	92.43 (19)	N—C6—C7	125.4 (8)
O3—Cu—N	97.14 (19)	N—C6—H6A	117.3
O4—Cu—N	95.30 (19)	С7—С6—Н6А	117.3
O1—Cu—N	100.41 (19)	C6—C7—C3	118.6 (8)
O2—Cu—Cu ⁱ	81.48 (13)	С6—С7—Н7А	120.7
O3—Cu—Cu ⁱ	85.37 (14)	С3—С7—Н7А	120.7
O4—Cu—Cu ⁱ	82.19 (15)	С9—С8—Н8А	109.5
O1—Cu—Cu ⁱ	85.69 (13)	С9—С8—Н8В	109.5
N—Cu—Cu ⁱ	173.42 (15)	H8A—C8—H8B	109.5
C9 ⁱ —O1—Cu	121.3 (4)	С9—С8—Н8С	109.5
C9—O2—Cu	127.2 (4)	H8A—C8—H8C	109.5
C11 ⁱ —O3—Cu	121.6 (4)	H8B—C8—H8C	109.5
C11—O4—Cu	125.0 (4)	02—C9—O1 ⁱ	124.3 (6)
C5—N—C6	115.7 (6)	O2—C9—C8	117.5 (6)
C5—N—Cu	120.8 (4)	O1 ⁱ —C9—C8	118.2 (6)
C6—N—Cu	123.4 (5)	C11-C10-H10A	109.5
C2C1H1A	120.0	С11—С10—Н10В	109.5
C2C1H1B	120.0	H10A—C10—H10B	109.5
H1A—C1—H1B	120.0	C11—C10—H10C	109.5
C1—C2—C3	115.1 (10)	H10A—C10—H10C	109.5
C1—C2—H2A	122.5	H10B-C10-H10C	109.5
С3—С2—Н2А	122.5	O3 ⁱ —C11—O4	125.8 (6)
C4—C3—C7	118.1 (7)	O3 ⁱ —C11—C10	118.6 (7)
C4—C3—C2	130.7 (9)	O4—C11—C10	115.6 (6)
C7—C3—C2	111.0 (8)		
O2—Cu—O1—C9 ⁱ	4.5 (12)	O4—Cu—N—C5	73.6 (5)
O3—Cu—O1—C9 ⁱ	86.0 (5)	O1—Cu—N—C5	164.3 (5)
O4—Cu—O1—C9 ⁱ	-81.6 (5)	O2—Cu—N—C6	160.8 (6)
N—Cu—O1—C9 ⁱ	-177.0 (5)	O3—Cu—N—C6	71.1 (6)
Cu ⁱ —Cu—O1—C9 ⁱ	0.6 (5)	O4—Cu—N—C6	-109.6 (6)
O3—Cu—O2—C9	-87.1 (6)	O1—Cu—N—C6	-18.9 (6)
O4—Cu—O2—C9	80.5 (6)	C1—C2—C3—C4	-18.3 (14)
O1—Cu—O2—C9	-5.7 (12)	C1—C2—C3—C7	166.1 (9)
N—Cu—O2—C9	175.8 (5)	C7—C3—C4—C5	0.6 (11)
Cu ⁱ —Cu—O2—C9	-1.7 (5)	C2—C3—C4—C5	-174.6 (7)
O2—Cu—O3—C11 ⁱ	80.3 (5)	C6—N—C5—C4	-1.4 (9)
O4—Cu—O3—C11 ⁱ	-4.3 (13)	Cu—N—C5—C4	175.7 (5)
O1—Cu—O3—C11 ⁱ	-87.0 (5)	C3—C4—C5—N	0.2 (10)
N—Cu—O3—C11 ⁱ	172.7 (5)	C5—N—C6—C7	1.8 (12)
Cu ⁱ —Cu—O3—C11 ⁱ	-1.2 (5)	Cu—N—C6—C7	-175.2 (7)
O2—Cu—O4—C11	-81.0 (5)	N—C6—C7—C3	-1.0 (14)
O3—Cu—O4—C11	3.6 (13)	C4—C3—C7—C6	-0.3 (12)
01—Cu—O4—C11	86.1 (5)	C2—C3—C7—C6	175.8 (8)

supplementary materials

N—Cu—O4—C11	-173.4 (5)		Cu—O2—C9—O1 ⁱ		1.8 (10)
Cu ⁱ —Cu—O4—C11	0.4 (5)		Cu—O2—C9—C8		-178.7 (5)
O2—Cu—N—C5	-16.0 (5)		Cu—O4—C11—O3 ⁱ		0.4 (10)
O3—Cu—N—C5	-105.7 (5)		Cu—O4—C11—C10		-177.7 (5)
Symmetry codes: (i) $-x+1, -y, -z$.					
Hydrogen-bond geometry (Å, °)					
D—H···A	i	D—H	H···A	$D \cdots A$	D—H··· A
С5—Н5А…О2	(0.93	2.54	3.083 (8)	118

